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Accurate forecasts of how animals respond to climate-driven environmental change 
are needed to prepare for future redistributions, however, it is unclear which temporal 
scales of environmental variability give rise to predictability of species distributions. 
We examined the temporal scales of environmental variability that best predicted 
spatial abundance of a marine predator, swordfish Xiphias gladius, in the California 
Current. To understand which temporal scales of environmental variability provide 
biological predictability, we decomposed physical variables into three components: a 
monthly climatology (long-term average), a low frequency component representing 
interannual variability, and a high frequency (sub-annual) component that captures 
ephemeral features. We then assessed each component’s contribution to predictive skill 
for spatially-explicit swordfish catch. The monthly climatology was the primary source 
of predictability in swordfish spatial catch, reflecting the spatial distribution associated 
with seasonal movements in this region. Importantly, we found that the low frequency 
component (capturing interannual variability) provided significant skill in predicting 
anomalous swordfish distribution and catch, which the monthly climatology cannot. 
The addition of the high frequency component added only minor improvement in 
predictability. By examining models’ ability to predict species distribution anomalies, 
we assess the models in a way that is consistent with the goal of distribution forecasts 
– to predict deviations of species distributions from their average historical locations. 
The critical importance of low frequency climate variability in describing anomalous 
swordfish distributions and catch matches the target timescales of physical climate 
forecasts, suggesting potential for skillful ecological forecasts of swordfish distribu-
tions across short (seasonal) and long (climate) timescales. Understanding sources of 
prediction skill for species environmental responses gives confidence in our ability to 
accurately predict species distributions and abundance, and to know which responses 
are likely less predictable, under future climate change. This is important as climate 
change continues to cause an unprecedented redistribution of life on Earth.
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Introduction

Our oceans are experiencing unprecedented climate-driven 
changes. The magnitude and direction of these changes vary 
widely across space and time, causing species to respond in 
diverse ways (Walther et al. 2002). For example, long-term 
changes in temperature and other physical properties have 
led to documented spatial (Perry et al. 2005, Tingley et al. 
2009, Pinsky et al. 2013), behavioural (Mueller et al. 2011) 
and phenological shifts (Edwards and Richardson 2004, 
Kharouba et al. 2018, Szesciorka et al. 2020) across an 
increasingly diverse array of species. In addition, ephem-
eral events such as heatwaves, storms and drought have 
caused catastrophic population declines and restructuring 
of ecological communities (Boersma and Rebstock 2014, 
Descamps et al. 2015, Smale et al. 2019). There remains 
considerable uncertainty and variability in the magni-
tude and direction of species’ responses to climate change 
and extreme climate events (Parmesan and Yohe 2003, 
Hazen et al. 2013, Pinsky et al. 2013, Poloczanska et al. 
2013, Smale et al. 2019). Accurate predictions of these 
responses are paramount for informing proactive climate-
ready management.

Species distributions can be considered a function of mul-
tiple scales of environmental variability (Winkler et al. 2014). 
For example, many migratory taxa respond to environmen-
tal information over a range of timescales, including both 
proximate conditions resulting from short-term environ-
mental variability (Boustany et al. 2010, Aikens et al. 2017, 
Snyder et al. 2017) as well as long-term historical (i.e. cli-
matological) conditions (Abrahms et al. 2019a, Tsalyuk et al. 
2019, Horton et al. 2020). Indeed, considering fine-scale 
environmental variability (Hazen et al. 2018, Morán-
Ordóñez et al. 2018, Abrahms et al. 2019b) or seasonal to 
inter-annual environmental variability (Zimmermann et al. 
2009, Reside et al. 2010, Descamps et al. 2015, Thorson 
2019) can improve predictions of species spatial distribu-
tions in response to environmental change. There is a need 
to better understand and define the relative contribution of 
different temporal scales of environmental variability to bet-
ter predict species’ responses to future environmental change.

Correlative species distribution models (SDMs) have 
become an important tool to predict and plan for changes 
in species abundance and distribution under climate change 
(Elith and Leathwick 2009, Robinson et al. 2017, Araújo et al. 
2019, Brodie et al. 2020). While correlative models pro-
vide important insights into species’ realized niches under 
observed conditions, there is a discrepancy among studies 
as to whether species–environment correlations may break 
down (Muhling et al. 2020), or hold up (Becker et al. 2019), 
under novel environmental conditions (Sequeira et al. 2018, 
Yates et al. 2018). As climate change is driving non-stationar-
ity in ecosystems and reducing the utility of historical climate 
information (Zimmermann et al. 2009, Zurell et al. 2009, 
Franklin 2010), there is a need to understand which scales of 
environmental variability contribute to predictive skill (i.e. 
predictive ability) in SDMs.

Ecological forecasting is gaining traction as an approach 
to understand, predict and project future ecosystem change 
(Tommasi et al. 2017, Dietze et al. 2018, Hobday et al. 2018, 
Jacox et al. 2020). In marine systems, ecological forecasting 
most often relies on correlative statistical models applied to 
ocean climate forecasts (Payne et al. 2017). This makes skill-
ful ecological forecasts at a particular spatiotemporal scale 
reliant on skillful forecasts of environmental variables at that 
same spatiotemporal scale (Jacox et al. 2020). For example, 
if a physical ocean forecast is unable to skillfully resolve 
fine-scale ephemeral features such as eddies and fronts, an 
ecological forecast reliant on physical variables cannot skill-
fully predict at these fine spatiotemporal scales. Similarly, if a 
physical or ecological forecast derives its skill from long-term 
climatological conditions, then forecasting is redundant and 
a monthly climatology can instead be used for short-term 
predictive purposes. Exploring which temporal scales of envi-
ronmental variability underpin our ability to predict species 
distributions is therefore essential to assess and improve the 
utility of ecological forecasting applications.

Our goal is to understand the temporal scales of environ-
mental variability that provide predictability for spatially-
explicit animal abundance. We use data from a swordfish 
Xiphias gladius fishery in the California Current System 
(CCS) to test the hypothesis that multiple scales of envi-
ronmental variability contribute to predictive skill of species 
distributions. We use an approach that decomposes impor-
tant environmental drivers into sub-annual, inter-annual and 
climatological components, to quantify which scales pre-
dictably structure distributions and movements of animals. 
Importantly, we quantify model performance not just for 
species distributions but also for species distribution anoma-
lies (i.e. deviations from climatological fisheries catch), which 
is key to assessing models’ capabilities to predicting future 
change in distributions. Our approach of modelling species 
distributions using abundance data is standard for fisheries 
datasets and for the species distribution modelling literature 
(Guisan and Thuiller 2005, Elith and Leathwick 2009). An 
improved accounting of the temporal scales of environmental 
forcing that drive species distributional changes will aid in 
prioritizing monitoring and planning adaptive management 
scenarios under climate variability and change.

Methods

Study system and focal species

The CCS is a highly productive and dynamic ecosystem in 
the northeast Pacific, dominated by seasonal upwelling that 
drives cool, nutrient-rich waters to the surface and stimu-
lates extensive biological productivity (Hickey 1979, Huyer 
1983). This ecosystem provides important foraging grounds 
for many highly migratory species, including species of 
importance to fisheries (Block et al. 2011). Variability in the 
CCS occurs across a range of spatial (meters to 1000s of km) 
and temporal scales, including intra-annual (e.g. upwelling, 
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mesoscale features), interannual (e.g. due to large-scale cli-
mate modes like El Niño-Southern Oscillation) and multi-
decadal scales (e.g. due to decadal climate oscillations and 
secular climate change) (Checkley Jr and Barth 2009). 
These changes in the regional climate and oceanography 
can have pronounced ecological impacts; for example, a 
severe marine heatwave from 2014 to 2016, with positive 
sea surface temperature anomalies up to 6°C (Bond et al. 
2015, Leising et al. 2015, Jacox et al. 2016), led to a broad 
range of ecosystem impacts including species redistribut-
ing across the CCS (Cavole et al. 2016, Becker et al. 2018, 
Muhling et al. 2020).

Swordfish are a large highly migratory predator widely dis-
tributed across the Pacific, Atlantic and Indian oceans (~50°N, 
50°S). Swordfish exhibit extreme diel vertical migration, and 
in the CCS forage at depths up to 500 m during the day 
and in surface waters at night (Sepulveda et al. 2010, 2018, 
Dewar et al. 2011). The CCS is an important foraging ground 
for north Pacific swordfish, with some adults undertaking 
spawning migrations to tropical waters near Hawaii during 
May–August (Grall et al. 1983) and other adults residing in 
the CCS year-round (Abecassis et al. 2012, Sepulveda et al. 
2020). Within the CCS, swordfish are generally distributed 
at higher latitudes in summer and lower latitudes in winter 
(Hanan et al. 1993, Sepulveda et al. 2018), with some indi-
viduals showing high site fidelity following extensive seasonal 
movements (Sepulveda et al. 2020). The presence and distri-
bution of swordfish in the CCS thus depend on a complex 
combination of movements across multiple scales, including 
large-scale spawning migrations, non-spawning seasonal lati-
tudinal movements, fine-scale foraging, diel vertical migra-
tion and site fidelity. As such, swordfish are an appropriate 
case study species to explore the sources of predictability in 
species distribution models.

Species data

Swordfish are available to U.S. fisheries in the CCS, and his-
torically have largely been targeted with drift gillnet gear, in 
contrast to longlines used in other large marine ecosystems 
(Hanan et al. 1993, Urbisci et al. 2016). The fishery operates 
primarily from September to January along the U.S. West 
Coast, deploying drift gillnet gear at night when swordfish 
are shallower in the water column and susceptible to this 
gear type. Gear will drift on average ~10 km during sets, 
so we consider the resolution of catch data to be approxi-
mately 0.1°. Swordfish catch data were obtained from the 
NOAA National Marine Fisheries Service observer program, 
which has placed observers on drift gillnet vessels since 1990 
(Caretta et al. 2004). Catch data were reported as the number 
of swordfish caught in each drift gillnet set, with multiple sets 
per fishing trip, and set-level effort reported as duration (h) of 
each set. Catch data for SDM training were temporally lim-
ited to 1998–2016 (n = 4162 sets, totaling 8788 swordfish 
caught) to match the availability of satellite-derived chloro-
phyll-a from 1998, and fisheries data beyond 2016 not avail-
able for analysis.

Environmental data

Environmental data (1998–2016) were sourced from a data-
assimilative configuration of the Regional Ocean Modelling 
System (ROMS) that covers the CCS from 30 to 48°N and 
from the coast to 134°W at 0.1° (~10 km) horizontal reso-
lution (<http://oceanmodeling.ucsc.edu/ccsnrt> version 
2016a; Neveu et al. 2016; Fig. 1). Vertical structure in the 
ROMS model is resolved by 42 terrain-following vertical 
levels (Veneziani et al. 2009). Daily sea surface temperature 
(SST; °C) and isothermal layer depth (ILD; m), defined as 
the depth corresponding to a 0.5°C temperature difference 
relative to the surface, were sourced from ROMS. Satellite-
derived chlorophyll-a (Chl; mg m−3) was a 4 km 8-day com-
posite from GlobColour sourced from Copernicus Marine 
Environment Monitoring Service and interpolated to the 
ROMS resolution (daily and 0.1° resolution). Environmental 
covariates were selected based on published relationships of 
swordfish distribution and catch in the CCS (Scales et al. 
2017b, Brodie et al. 2018, Smith et al. 2020).

For each grid cell, three environmental covariates (SST, 
ILD, Chl) were temporally decomposed into three compo-
nent signals: 1) a monthly climatology; 2) a low-frequency 
component; 3) a high frequency component. The monthly 
climatology captures the mean historical seasonal cycle, with 
conditions for each month averaged across all years (1998–
2016). Daily anomalies for each variable were calculated by 
subtracting the monthly climatology from the daily time 
series at each grid point. The low frequency component was 
calculated by smoothing the anomalies with a 12-month run-
ning mean centered on each day in the time period (1998–
2016). This low frequency component captures interannual 
variability in the oceanic environment. The high frequency 
component was the component remaining after subtracting 
the monthly climatology and low frequency components 
from the daily values. This high frequency component iso-
lates sub-annual variability including ephemeral features such 
as fronts and eddies. The monthly climatology, low-frequency 
and high-frequency components sum to the daily values of 
the observed environmental covariates.

Our approach to decomposing environmental variables 
was designed with an eye toward assessing SDMs for fore-
casting applications. In this sense, the monthly climatology 
provides a baseline against which forecasts can be measured. 
If the high and low frequency components do not apprecia-
bly increase model performance relative to the monthly cli-
matology, then a forecast is unnecessary. The low frequency 
component isolates interannual variability (i.e. how a specific 
year differs from an ‘average’ year). Capturing interannual 
variability is the target of climate forecasts that are used as 
the basis for SDM forecasts, so our analysis evaluates whether 
timescales of predictive skill in the climate forecasts align with 
timescales of predictive skill in the SDM. Model performance 
for interannual variability is also key to informing manage-
ment actions that are taken on an annual basis (e.g. seasonal 
closures; Welch et al. 2019, Smith et al. 2020). While high 
frequency environmental variability, including ephemeral 
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features such as fronts and eddies, is commonly included 
when developing and predicting SDMs, in a forecasting sense 
this component is unlikely to be predictable except at very 
short lead times. Thus, if an SDM derives much of its skill 
from the high frequency component, it is likely to not be a 
good candidate for forecasts.

Species distribution models

A total of 4162 drift gillnet sets, totaling 8788 swordfish 
caught (mean catch of 2.11 swordfish per set) were used to 
build swordfish SDMs. Here we model swordfish catch per 
unit effort as a function of the environment. Swordfish catch 
was modelled as a function of the environment using a gen-
eralized additive mixed model (GAMM), using the mgcv R 
package (ver. 1.8-33; Wood 2017). GAMMs were fitted with 

a negative binomial family and log link function, with fishing 
trip included as a random effect (using bs = ‘re’). Including 
fishing trip as a random effect removed temporal autocorrela-
tion in the model residuals, according to the ‘acf ’ function in 
the stats R package. We did not consider swordfish popula-
tion biomass in the North Pacific in our modelling approach 
as biomass has remained relatively constant across our study 
period (ISC 2018). Environmental covariates (SST, ILD, 
Chl) were included using a thin plate regression spline, with 
the number of knots (which controls the degree of non-lin-
earity) not pre-specified. Gear soak time (h) was also included 
as a smoother to account for variability in catch relating to 
the duration of each set.

Three SDMs were built to partition the relative influence 
of decomposed environmental covariates on model predic-
tive performance. The first SDM included only the monthly 

Figure 1. Map of the California Current System showing observed and decomposed sea surface temperature (SST) for two example days, 1 
November 2007 (A–D), and 1 November 2015 (E–H). Swordfish catch locations aggregated to the nearest 0.5 degrees are shown, with the 
red polygon indicating 95% of the catch data (core fishing zone; top left). Time-series plots (I and J) show the spatially-averaged observed 
and decomposed sea surface temperature from 1998 to 2016, and were smoothed for illustrative purposes. Decomposition separated sea 
surface temperature into three component parts: a monthly climatology, a low frequency signal capturing interannual variability, and a high 
frequency signal capturing the remaining variability on sub-annual timescales.
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climatologies of each environmental covariate. The second 
SDM included the sum of the monthly climatology and low 
frequency anomalies for each environmental covariate (i.e. 
only the high frequency component was removed). The third 
SDM was built with the raw model output for each environ-
mental covariate (i.e. including the monthly climatology, low 
frequency and high frequency components). The three SDMs 
thus incrementally increased the temporal resolution of envi-
ronmental predictors and allowed us to partition the predic-
tive performance of SDMs into climatological, low frequency 
and high frequency environmental processes. We did not 
assess the three decomposed environmental covariates indi-
vidually as the low and high frequency anomalies were not 
individually capable of describing spatially-explicit swordfish 
catch. SST and ILD were correlated in the monthly clima-
tology-only SDM and the interpretation of their response 
curves should be treated with caution. Environmental covari-
ates in the other two SDMs were not correlated.

Model evaluation: mean catch and distribution

The explanatory power and predictive performance of 
each swordfish SDM was evaluated using a series of met-
rics appropriate to the integer response variable to assess 
model fit, bias and performance. Goodness-of-fit was com-
pared among models using Akaike’s information criterion, 
explained deviance (%) and r-squared. Model bias was 
assessed using the slope and intercept of a linear regression 
of observed and fitted abundance values. Model predictive 
performance was assessed using metrics of model accuracy, 
discrimination power, calibration and precision of predic-
tions (Norberg et al. 2019). Specifically, accuracy measures 
the degree of proximity between the predicted and true 
value. Discrimination power considers how well predictions 
discern observed trends, but does not consider the absolute 
match between predicted and observed values. Calibration is 
the statistical consistency between distributional predictions 
and observed values, such as the proportion of observed val-
ues that fall within a model’s confidence interval. Precision 
measures the width of the predictive distribution. For accu-
racy, calibration and precision, smaller values indicate better 
performance. Model accuracy was determined by the root 
mean square error between observed and predicted values. 
Discrimination power was determined as the Spearman cor-
relation coefficient between observed and predicted values. 
Calibration was determined by finding the absolute differ-
ence between 0.5 and the proportion of predictions that fall 
within the 50% prediction interval (i.e. the interval within 
which 50% of future observations would fall) of each model 
(Norberg et al. 2019). Precision was determined by the stan-
dard deviation of predictions that fall within the 50% predic-
tion interval (Norberg et al. 2019).

These measures of model performance were assessed 
through two types of cross-validation. First, models were 
trained on a random subset of 75% of the data and tested 
against the remaining 25%. This was repeated 10 times, and 
the four measures of model predictive performance (accuracy, 

discrimination, calibration and precision) were each averaged. 
Second, models were trained on all data from 1998 to 2013, 
and tested against data from 2014 to 2016 when a severe 
marine heatwave occurred in the CCS. This out-of-sample 
cross-validation approach tests how well models perform 
under novel environmental conditions (Muhling et al. 2020). 
The four measures of predictive performance described above 
were then calculated. For all out-of-sample predictions, the 
fishing trip random effect was excluded and soak time was 
fixed at 12 h (the mean of observed effort).

Model evaluation: swordfish catch anomalies

We then assessed the ability of the three SDMs to predict 
swordfish catch anomalies in the core fishing zone, where 
95% of drift gillnet swordfish catch was observed from 1998 
to 2016 (Fig. 1). We examined catch anomalies rather than 
absolute catches to remove the influence of long-term average 
catch, and focus on the ability of models to predict changes 
in catch as a function of environmental change, a neces-
sary step toward making accurate predictions under climate 
change. For example, using anomalies we can assess whether 
November in a given year has higher or lower catch than the 
average November, rather than whether more fish are gen-
erally caught in November than December. While assessing 
model performance based on anomalies is standard practice 
in climate and weather forecasting, it is less common in spe-
cies distribution modelling (Tommasi et al. 2017). However, 
examining anomalies is a critical analytical step when predict-
ing climate change impacts, as the goal is to capture diver-
gence from the climatological state. Here, examining catch 
anomalies was an effective way to quantitatively assess the 
added value of including low and high frequency environ-
mental variability in swordfish catch models.

To calculate swordfish catch anomalies, we first predicted 
swordfish catch (number per 12 h set) in each model SDM 
for every day from 1998 to 2016. Predictions and observa-
tions were limited to the core fishing zone (Fig. 1) where 
95% of drift gillnet swordfish catch was observed during that 
period. We then averaged observed and predicted swordfish 
catch in this core fishing zone for 1) each month in the fish-
ing season (September–January), and 2) across four spatial 
resolutions (0.5°, 1°, 2°, and the entire core fishing zone). 
For both predicted and observed catch, catch anomalies were 
created by first calculating a climatology of monthly sword-
fish catch (1998–2016), then finding the catch difference 
between each month and its monthly climatological value.

Predicted and observed anomalies for each month were 
compared using two metrics. The first was Pearson correla-
tion coefficients between predicted and observed anomalies, 
with significance assessed using the test statistic, r. The sec-
ond was the probabilistic accuracy of the upper tercile (66%) 
of swordfish catch (Spillman and Hobday 2014). This met-
ric calculates the proportion of a correct yes/no prediction 
of swordfish catch anomalies, where a ‘correct yes’ is when 
predicted and observed catch anomalies both lie within the 
upper tercile, and a ‘correct no’ is the opposite. Accuracy is 
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then calculated as the sum of ‘correct yes’ and ‘correct no’, 
divided by the total number of predictions (Spillman and 
Hobday 2014, Tommasi et al. 2017). Probabilistic accuracy 
ranges between 0 and 1, with values greater than 0.56 better 
than chance (Spillman and Hobday 2014).

Results

Decomposed environmental data

Decomposing environmental data into three temporal com-
ponents (monthly climatology, low frequency and high fre-
quency) highlighted both spatial and temporal trends in the 
structure of environmental variation. The monthly clima-
tology revealed strong spatial gradients in ocean variables, 
including a cross-shore gradient in chlorophyll and a latitu-
dinal gradient in SST, while the low frequency signal showed 
persistent and often widespread anomalies. In contrast, the 
high frequency signal isolated ephemeral features such as 
fronts and eddies (Fig. 1). Time-series of all environmental 
covariates (SST, ILD, Chl) showed that the marine heatwave 
from 2014 to 2016 was distinct from other years (Fig. 1, 

Supporting information). Given the persistence of this event, 
its signal was most pronounced in the low-frequency time-
series, which exhibited anomalously warm water, low chloro-
phyll and shallow isothermal layer depths (Fig. 1, Supporting 
information).

Species distribution models

Spatially-explicit predictions of swordfish catch in the core 
fishing zone varied substantially depending on which scales 
of decomposed environmental covariates were included. The 
SDM using daily values highlighted more fine-scale oceano-
graphic features relative to the SDM that included only the 
monthly climatology (Fig. 2). The SDM that included both 
the monthly climatology and low frequency components 
highlighted some of the same features as the daily values 
model, with both of these models showing large differences 
in the distribution of swordfish catch between the two exam-
ple years (2000 and 2015; Fig. 2). These differences amongst 
SDMs emerge partly as a result of different ranges of envi-
ronmental data available for model fitting (Fig. 3, Supporting 
information). SDMs built from the daily values see a larger 

Figure 2. Predicted swordfish catch (number caught per 12 h set) from each species distribution model for two example days, 1 November 
2000 (top row) and 2015 (bottom row).
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range of environmental data than the two other SDMs, for 
which temporal smoothing reduces extreme values of each 
predictor (e.g. deeper ILD, warmer SST and higher chl) 
(Fig. 3, Supporting information).

Model evaluation: mean catch and distribution

We found only minor differences in model fit and perfor-
mance among the three swordfish SDMs. Generally, there 
were incremental improvements in model fit, bias and per-
formance as the temporal resolution of decomposed environ-
mental predictors increased from the climatological SDM to 
the climatological plus low frequency SDM to the daily val-
ues SDM (Table 1). However, there were no meaningful dif-
ferences among the SDMs for the four performance metrics 
(discrimination, accuracy, calibration and precision). This 
pattern generally held when cross-validating SDMs against 
marine heatwave years (2014–2016; Table 1). The minor dif-
ferences among SDMs indicate that most of the predictive 
performance of the models is derived from the monthly cli-
matology of environmental covariates.

Model evaluation: swordfish catch anomalies

Swordfish catch anomalies indicate whether more or less 
swordfish are caught relative to the long-term average for 
a given time and place (positive and negative anomalies, 
respectively). While the SDM built on environmental cli-
matologies had no ability to predict anomalous swordfish 
catch, we found that the models including low and high 
frequency environmental variability were able to accurately 
predict swordfish catch anomalies over multiple spatial scales 
(Fig. 4, Supporting information). Differences in performance 
between the monthly climatology + low frequency SDM and 
the daily values SDM were minor, with variation in per-
formance attributed to the month and spatial resolution of 
predictions (Fig. 4). The first performance metric, Pearson 
correlation coefficient, indicates the discriminatory power of 
predictions. That is, when a large anomaly is observed do we 
also predict a large anomaly? Our results show that the dis-
criminatory power was highest in the daily values model, and 
peaked at a 2° spatial resolution. The second performance 
metric, probabilistic accuracy, indicates how well we can pre-
dict an anomaly regardless of the magnitude of that anomaly. 

Figure 3. Frequency distribution of environmental covariates at swordfish catch locations temporally decomposed into their component 
parts (color). Covariates were used in species distribution modelling, with gear soak time consistent across all models so only one color is 
shown.
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Both the low and high frequency models had the same ability 
to differentiate the occurrence of an anomaly, and this was 
consistent across the four spatial resolutions that were tested 
(Fig. 4). These results indicate that swordfish SDMs were not 
only capable of predicting anomalous catch, but that most 
of the predictability of anomalous catch came from the low-
frequency environmental component.

Discussion

The redistribution of biodiversity as a response to climate 
variability and change has driven the need for accurate and 
precise predictions of animal distributions, but has also 
exposed the challenges and complexities of using correla-
tive models to represent multiple, multi-scale, responses of 
animals to their environment. Here, we temporally decom-
posed environmental information to better understand how 
component signals influence the distributions of swordfish, 
a highly mobile marine predator. We found that our abil-
ity to predict swordfish distribution and catch was driven 
predominantly by a combination of climatological and low 
frequency environmental signals. When focusing on devia-
tions from historical mean swordfish catch due to anomalous 
environmental conditions, the low frequency component 
was the dominant source of predictive skill. This timescale 
is consistent with the target timescales of climate forecasts 
and projections, indicating a promising match between the 

environmental and ecological scales of predictability. In con-
trast, higher frequency environmental variability (e.g. specific 
times and locations of oceanographic features such as eddies) 
is not predictable on climate timescales, but its relatively 
small contribution to SDM predictive performance in our 
study suggests this lack of predictability may not be a hin-
drance to predicting and projecting species distributions.

Decomposing the environmental drivers of animal dis-
tributions allowed us to incrementally assess each compo-
nent’s role in predicting swordfish catch and distribution. 
The environment will influence animal movements and 
behavior across multiple spatial and temporal scales, and 
thus an animal’s observed location represents the integra-
tion of multiple scales of variation. Animal migrations and 
seasonal movements may be cued to the monthly climatol-
ogy as it reflects long-term phenological patterns of resource 
availability (Bauer et al. 2011, Winkler et al. 2014), while 
finer-scale movements and behavior may be more closely 
linked to dynamic environmental cues that signal local prey 
enhancement (Scales et al. 2014, Abrahms et al. 2018). By 
partitioning temporal scales of environmental variability, 
our results contribute to understanding the mechanisms 
that structure species responses to the environment at mul-
tiple scales. Here, the monthly climatology of environ-
mental covariates was likely a good predictor of swordfish 
distributions because swordfish exhibit seasonality and some 
degree of site fidelity in their movements (Sepulveda et al. 
2020). The incremental improvement in model predictive 

Table 1. Summary of species distribution model fit (AIC, % explained deviance and R2), bias (gradient and intercept) and model performance 
(discrimination, accuracy, calibration, precision) metrics for each decomposed model (monthly climatology, monthly climatology and low 
frequency, and daily values). Colors indicate the best performing model (green), to the worst performing model (red) and in between (yel-
low). Model performance metrics were completed for models trained on all years (1998–2016) and cross-validated 10 times using a random 
75%/25% split, with mean (± SE) shown. Metrics were also completed for models trained on a subset of years (1998–2013) and tested on 
marine heatwave years (2014–2016).

Monthly climatology Climatology + low frequency Daily values

Trained on 1998–2016
 AIC 14 510 14 509 14 478
 Explained deviance (%) 48.5 48.7 49.3
 R2 0.37 0.376 0.373
 Slope 1.587 1.569 1.488
 Intercept −0.270 −0.200 −0.079
 Discrimination: Mean correlation coefficient (SE) 0.352 (0.006) 0.336 (0.006) 0.334 (0.006)
 Accuracy: Mean root mean square error (SE) 2.907 (0.05) 2.926 (0.05) 2.926 (0.05)
 Calibration: proportion of predictions within 50% 

prediction interval
0.297 (0.034) 0.370 (0.035) 0.288 (0.024)

 Precision: SD of predictions within 50% prediction 
interval 

0.516 (0.02) 0.537 (0.02) 0.495 (0.01)

Trained on 1998–2013
 AIC 13 759 13 746 13 713
 Explained deviance (%) 49 50 50
 R2 0.373 0.381 0.38
 Gradient 1.629 1.592 1.508
 Intercept −0.293 −0.211 −0.085
 Discrimination: Mean correlation coefficient (SE) 0.219 0.288 0.248
 Accuracy: Mean root mean square error (SE) 3.122 3.043 3.014
 Calibration: |p < 0.05| 0.366 0.382 0.140
 Precision: SD of predictions within 50% prediction 

interval
0.325 0.463 0.524
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performance with the addition of the low-frequency com-
ponent reflects the high mobility of swordfish, which allows 
them to move in response to local and interannual variabil-
ity. However, we found that the addition of high frequency 
environmental variability to these broader scale signals did 
not meaningfully improve predictability, although it did 
increase SDM explanatory power. This may be because 
fine-scale swordfish distributions are driven by prey distri-
butions and foraging behavior at depth, and we therefore 
might not expect swordfish to respond to high frequency 
(e.g. ephemeral) environmental features in surface waters. 
In other words, our results suggest a swordfish was caught 
at a location not because of its immediate ‘here and now’ 
environment, but rather due predominantly to broader and 

longer-term environmental conditions. The spatial scale of 
fisheries effort and ROMS data was ~10 km, so we were 
unable to resolve biological and environmental processes at 
finer scales at which swordfish respond to their immediate 
environment. Our decomposition approach systematically 
identified the temporal scales of swordfish predictability, but 
this approach would not be necessary if a swordfish SDMs 
purpose was to explain habitat use and historical distribu-
tion – as is the case in most SDM purposes (Araújo et al. 
2019). Under such purposes, using the daily values of envi-
ronmental covariates would likely maximize the explanatory 
power of models (Scales et al. 2017a).

Our analysis adds to a growing body of literature that 
indicates that the utility of climatological information is 

Figure 4. Average observed swordfish catch (maps) and predictive performance for modeled swordfish catch anomalies, with predictions 
averaged over four spatial resolutions (0.5°, 1°, 2° and the entire region). Anomaly correlation coefficients (middle column) and probabi-
listic accuracy (right column) are shown for each month for the daily values species distribution model (blue circles), the monthly climatol-
ogy plus low frequency model (yellow triangles), and the monthly climatological model (purple squares). Blue crosses and yellow stars 
indicate significance of the correlation coefficients (p < 0.05). The horizontal black line at 0.56 indicates the minimum level of probabilistic 
accuracy, with values below this no better than random. Correlation coefficients for the monthly climatology are 0 and not shown.
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becoming increasingly degraded given the accelerating pace 
of global change and non-stationarity in ecosystem responses 
(Zimmermann et al. 2009, Zurell et al. 2009, Scales et al. 
2017a, Muhling et al. 2020). Indeed, much of the climate 
velocity literature argues that local environmental condi-
tions drive species movements and population range shifts 
(Pinsky et al. 2013, Sunday et al. 2015, Brito-Morales et al. 
2018). Here we show evidence that a combination of clima-
tological and low-frequency environmental processes govern 
our ability to accurately predict the distribution and move-
ments of a highly mobile predator species. We might expect 
this combination of inter-annual and long-term timescales 
of environmental variation to provide predictability of spe-
cies distributions for many mobile marine and terrestrial 
species that exhibit spatial shifts in response to environmen-
tal change. However, the low-frequency component of pre-
dictability may be less important for species with high site 
fidelity, particularly terrestrial species that are able to exploit 
microclimates in response to adverse environmental condi-
tions (e.g. thermal refugia; Pinsky et al. 2019). For species 
that can exploit microclimates, high frequency environmen-
tal variability (in addition to static variables, such as substrate 
type) may play a larger role in predicting species distribution 
than seen here for the pelagic swordfish. However, we should 
acknowledge that the spatial scale being examined will have 
a large influence on the relative importance of component 
signals. For example, on a global scale a species distribution 
might be best predicted by long-term mean conditions, but 
on a local scale (e.g. meters) the high frequency components 
should be more important in describing species distribu-
tions and habitat use. Testing our temporal decomposition 
approach on other species and on different spatial scales 
would further help to elucidate the spatiotemporal scales of 
predictability in species distributions.

The metrics of predictive performance that we used to 
compare across abundance-based SDMs are well known and 
frequently used (Norberg et al. 2019), yet showed inconsis-
tent results and in certain cases indicated only minor differ-
ences across SDMs (Table 1). Such variability and minor 
improvement are consistent with similar studies that have 
compared SDMs built with climatological and extreme event 
data (e.g. heatwaves and droughts; Morán-Ordóñez et al. 
2018), and local weather data (Zimmermann et al. 2009). 
Zimmermann et al. (2009) in particular noted that the pri-
mary impact of including local weather conditions in SDMs 
was a minimization of over- and underprediction, with only 
modest improvements in area under the receiver operating 
characteristic curve (AUC) (a standard evaluation metric of 
binomial SDMs). However, an important distinction should 
be made between the standard SDM performance metrics 
(Table 1) and assessment of skill for predicting anomalous 
species distributions. The climatological environmental data 
have by definition no ability to predict anomalous distribu-
tions. Since the goal of many prediction or projection analyses 
is to capture changes from the climatological state, it is criti-
cal in this context to assess model skill for predicting anoma-
lies of species distribution and catch. While uncommon in 

species distribution modelling, assessing skill based on anom-
alies is common practice in climate and weather studies: for 
example, a model is not assessed by whether it can predict 
if summer is on average warmer than winter, but whether a 
given summer is warmer or colder than the average summer. 
These skill metrics are becoming more common in ecologi-
cal forecasting applications (Hobday et al. 2016). We suggest 
that in a prediction context, the suite of SDM performance 
metrics should distinguish skill in predicting distribution 
anomalies from skill in predicting climatological patterns.

Much of the explanatory power in our SDM of swordfish 
in the CCS came from the environmental monthly climatol-
ogy, but the monthly climatology itself cannot be used to 
predict deviations from mean species distributions. Thus, the 
ability of low- and to a lesser degree high-frequency environ-
mental variability to enable skillful predictions of anomalous 
species distributions is a key result of our study; indeed, it 
indicates the feasibility of forecasting species distribution 
changes on both short (seasonal) and long-term (climate 
change) timescales. For swordfish specifically, we might 
expect climate change to delay the arrival of cooler waters 
to the southern California Bight and subsequently shift the 
typical peak period of catch (Sep–Nov) to later in the win-
ter season. The implications of such a shift for the fishery 
could be drastic without appropriate mitigation or adapta-
tion. For example, temporal shifts in key swordfish fishing 
months may be impacted by poor weather (i.e. late winter 
and spring storms) and overlap with other seasonal fisher-
ies (e.g. gear switching; Frawley et al. 2020) which would 
likely have an economic impact on this fishery (Smith et al. 
2020). Application of a seasonal forecasting product to pre-
dict whether a swordfish fishing season will be typical or 
anomalous may help to improve the resilience and capacity 
of fishers in response to climate change. Our results show 
the potential for a skillful seasonal forecast for this sword-
fish fishery, as the low-frequency temperature variability that 
drives swordfish distribution anomalies in the CCS has been 
shown to be skillfully forecast by global climate prediction 
systems (Jacox et al. 2019). Additionally, we demonstrate 
a straightforward approach to decompose and evaluate the 
drivers of ecological predictability which could be applied in 
other study systems as a precursor to ecological forecasting.

Ecological forecasting requires identifying a particular 
metric that is accurately predictable and relevant to the fore-
cast end-user (Jacox et al. 2020). Our results indicate that 
we could accurately predict swordfish catch anomalies dur-
ing a historical testing period, but the two metrics used to 
assess predictive ability did not show consistent patterns 
across SDMs or spatial resolution of catch anomalies. This 
disparity is likely a function of how fisher behavior can influ-
ence fisheries data. For example, when environmental con-
ditions become more favorable for positive catch anomalies, 
this doesn’t necessarily mean that fishing effort or catch will 
increase. Other factors, like spatiotemporal management 
zones, historical fisher knowledge and weather can all impact 
where and when fishers fish (Frawley et al. 2020, Smith et al. 
2020). In light of remaining uncertainties in swordfish 
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distribution predictions, along with relevant scales for man-
agement action, it may be more pragmatic to forecast species 
distributions probabilistically (e.g. with tercile classification; 
Fig. 4) than deterministically (e.g. with exact values of habi-
tat suitability or catch). It is important to understand these 
limitations of predictability for ecological forecasting, and 
ongoing work could further explore predictability through 
retrospective skill testing (Hobday et al. 2016, Brodie et al. 
2017).

Conclusion

Understanding the factors that promote accurate prediction 
of species distributions in response to environmental change 
is vital for informing climate-ready and proactive ecosystem 
management. Here, we identify the temporal scales of envi-
ronmental variability that provide predictive skill for the dis-
tribution of a mobile marine predator, distinguishing their 
ability to explain historical mean distributions from their 
ability to predict distribution anomalies. In doing so, we 
highlight how both long-term and interannual environmen-
tal variability help to structure the distributions of a mobile 
marine predator. Understanding the scales that provide skill 
for predicting species responses to the environment gives 
confidence in our ability to accurately predict species redis-
tributions, and to know which responses are likely unpredict-
able, under future climate change.
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